Grammar Specialisation Meets Language Modelling

Manny Rayner
Netdecisions Technology Centre
Westbrook Centre, Milton Road

Cambridge CB4 1YG
United Kingdom
mannyrayner@yahoo.com

1 Introduction

Constructing language models that appropri-
ately constrain recognition is a key task in
building spoken language applications. There
are two ways to do this: either to induce a
statistical language model from corpus data,
or to hand-code the language model explicitly
as a grammar. Although the academic com-
munity has paid more attention to statistical
language models (Rosenfeld and Huang, 1992;
Ward and Issar, 1995), there are many cir-
cumstances in which a grammar based model
offers clear advantages:

e Expert users who are familiar with the
intended coverage of the system tend to
get better recognition performance from
grammar based models than from statis-
tical models (Knight et al., 2001).

e There may be no training data, or insuf-
ficient training data, to train a domain-
specific statistical language model, and
the performance of domain-independent
statistical language models is inadequate
for most spoken dialogue applications.

e Vocabulary can change unpredictably in
ways that require corresponding adjust-
ment of the LM, for example if the user
needs to refer to a member of a set of
objects which is only known at run-time.
Again, this makes it difficult to construct
a high-quality domain-specific statistical
language model.

For both commercial and research sys-
tems in novel domains, the above is the rule
rather than the exception. Consequently,

Beth Ann Hockey, John Dowding
RIACS, Mail Stop 19-39
NASA Ames Research Center
Moffett Field, CA 94035-1000
USA
{bahockey, jdowding}@riacs.edu

commercial spoken language implementation
platforms like Nuance (Nuance, 2002) and
SpeechWorks (SpeechWorks, 2002) that cater
to commercial developers have over the last
few years focussed almost exclusively on
hand-coded grammar-based language models,
typically realised as annotated CFGs written
in formalisms formalisms like Nuance’s Gram-
mar Specification Language (GSL).

Increasing interest in mixed-initiative sys-
tems, which require more elaborate gram-
mars, has motivated a corresponding inter-
est in development of tools that allow specifi-
cation of CFG grammars using more expres-
sive linguistic formalisms such as unification
grammar (Moore, 1998; Kiefer and Krieger,
2000; Dowding et al., 2001; Rayner et al.,
2001; Bos, 2002). From a software engineering
point of view, there are good reasons to want
to use a high-level formalism: grammars can
be written in a compact and modular form,
making it easier to maintain and reuse them.
However, there is a clear downside. Very gen-
eral grammars are good from the point of view
of reusability, but by their nature will not be
closely tuned to a given domain. Also, the
increase in expressive power is as usual ac-
companied by a decrease in tractability; small
changes in the source unification grammar can
have large effects on compilation times and
run-time performance (Rayner et al., 2000d).

In this paper, we will show how we can at-
tack the problems we have just named us-
ing the tool of grammar specialisation via
explanation-based learning (Rayner, 1988;
Samuelsson, 1994; Rayner and Carter, 1996).
We start with a general unification grammar,
and a domain corpus. We use the corpus

to create a specialised version of the unifica-
tion grammar; we do this by chunking to-
gether rules in ways suggested by the cor-
pus examples so as to form macro-rules. The
specialised grammar has a coverage that is
strictly less than that of the original gram-
mar, but with a suitable corpus the prac-
tical impact on coverage need not be large.
The structure of the grammar is sufficiently
simplified by the specialisation process that
compilation into a language model and the
run-time behaviour of that language model
both become tractable. The grammar is in
effect shoe-horned into a standard shape with
known properties, making it possible to tune
the language model systematically while still
keeping a perspicuous representation of it.

Experiments were carried out using the
Gemini platform (Dowding et al., 1993) and
a substantial unification grammar developed
for a simulated robotics domain. Section 2 de-
scribes the experimental framework in more
detail. Section 3 briefly presents background
on grammar specialisation, and Section 4 de-
scribes how it was applied to the task of gen-
erating CFG language models. Section 5 de-
scribes experiments in which a domain cor-
pus was used to create CFG language mod-
els derived from several different specialised
versions of the original grammar. Section 6
concludes.

2 Basic framework

The experiments described here have been
carried out in the context of a spoken lan-
guage interface to a simulated version of
the Personal Satellite Assistant (PSA; (PSA,
2002)). The real PSA is a robot currently
being developed at NASA Ames Research
Center, which is intended for deployment on
the Space Shuttle and/or International Space
Station. The PSA spoken dialogue interface
demo supports interaction with a simple sim-
ulation of the Shuttle and of the robot’s move-
ment and sensor functions.

Speech recognition is performed using a
version of the Nuance recognizer (Nuance,
2002). Initial language processing is carried
out by the SRI Gemini system (Dowding et

Start scenario three

What is the temperature?

How about carbon dioxide?

Measure the pressure at flight deck

Go to the crew hatch and close it

Close all three doors

What were temperature and pressure at
fifteen oh five?

Is the temperature going up?

Is the door at crew hatch open?

Do the fixed sensors say that the pressure
is decreasing?

Was the fan at mid deck switched on
three minutes ago?

Figure 1: Examples of utterances covered by
the PSA application grammar

al., 1993). The language processing grammar
is compiled into a recognition grammar us-
ing the methods of (Moore, 1998); the net re-
sult is that only grammatically well-formed
utterances can be recognized. Dialogue man-
agement and other downstream processing is
described in (Rayner et al., 2000c). The
dialogue model has two states: the “main”
state accepts a wide range of user utter-
ances, and the “confirmation” state accepts
only confirmation/disconfirmation utterances
(“yes” /“no” [“affirmative” etc).

The language model for the “main” dia-
logue state was compiled from a general uni-
fication grammar essentially consisting of a
scaled-down and adapted version of the Core
Language Engine grammar for English (Pul-
man, 1992), combined with a lexicon spe-
cific to the PSA domain comprising 334 unin-
flected entries. This grammar is described in
detail in (Rayner et al., 2000d). The examples
in Table 1 illustrate current coverage.

The training corpus used in the exper-
iments we describe below is the systems’s
“recognition log”. Every spoken utterance in-
put to the system since the start of the project
has been stored, which has to date given us a
corpus consisting of 20944 logged utterances
(71934 words) of data. Specifically, what is
stored is the text output by the recognizer in

those cases where anything was actually pro-
duced. The obvious drawback is that not all
the logged speech data is correct, given that
recognition is less than perfectly accurate. On
the other hand, we were interested to see what
could be achieved without incurring any siz-
able overheads related to corpus collection;
the results suggest that this data is in fact
quite useful. Of the 20944 logged utterances,
we actually only made use of the 14271 utter-
ances produced in the “main” dialogue state
that were inside the coverage of the grammar,
discarding the 6436 confirmation-state utter-
ances and the 237 out-of-grammar utterances.

In addition to the low-grade untranscribed
training data described in the last paragraph,
we also recorded and transcribed a further
6264 utterances (29008 words) of data for
use in development and testing. This data
was collected from 24 subjects not previ-
ously involved in the development of the sys-
tem; each subject was first given a uniform
short introductory session, and then asked to
solve a number of tasks which involved using
the speech interface to the simulated robot.
We discarded the 2087 confirmation-state ut-
terances and the 576 out-of-grammar utter-
ances, leaving 3601 main-state in-coverage ut-
terances totalling 20985 words.

3 Grammar Specialization Using
Explanation Based Learning

The idea of using Explanation Based Learn-
ing (Mitchell et al., 1986) to specialise a
unification grammar was originally suggested
in (Rayner, 1988) and has since been ex-
plored in a number of papers (Samuelsson and
Rayner, 1991; Samuelsson, 1994; Neumann,
1994; Srinivas and Joshi, 1995; Rayner and
Carter, 1996); it is most easily conceptualized
as a kind of chunking or macro-rule learning
method (Fikes and Nilson, 1971). We start
with a unification grammar G and a parsed
corpus of correct derivation trees D; for a set
of utterances within the coverage of G. Each
derivation tree D; is decomposed into one or
more subtrees D;;; each D;; is then converted
into a “chunked” grammar rule R;;, by re-
cursively unifying together every daughter of

every rule in D;; with the mother of the rule
immediately below it. The mother of R;; will
then be the mother of the rule at the root of
D;;, and its daughters will be the concatena-
tion of the daughters of the rules at the fringe
of D;;. The definition implies that all the con-
straints present in the derivation tree D;; are
included in the corresponding rule Rijl. The
intent is to replace G with a new grammar G’
consisting of the union of all the R;;. By con-
struction, G’ has strictly less coverage than
G, but is more closely tuned to the corpus.

ATl of the above is very abstract: we illus-
trate with a concrete example. Suppose G is
the toy unification grammar

SIGMA: [] --> S:[]
S:[1 -—>

NP: [num=N, pers=P], VP:[num=N, pers=P]
VP: [num=N, pers=P] -->

V: [type=trans, num=N, pers=P], NP:[]
NP: [num=sing, pers=3] -->

NAME: []
NP: [num=N, pers=3] -->

DET: [num=N], NBAR: [num=N]
NBAR: [num=N] -->

ADJ:[], NBAR: [num=N]

NAME: [] --> john

V: [type=trans, num=sing, pers=3] --> has
DET: [num=sing] --> a

ADJ:[] --> red

NBAR: [num=sing] --> car

and our training example D; is the single pos-
sible derivation tree for the sentence “John
has a red car”. We can combine together all
the rules in D; to yield the single chunked rule

SIGMA: [] -—>
NAME: [],
V: [type=trans, num=N, pers=3],
DET: [num=N] ,
ADJ:[1,
NBAR: [num=N]

Alternately, we can extract two rules from Dq
by first chunking together the SIGMA-level
rules to make the macro-rule

SIGMA: []1 -->

!This result is stated in a more precise form and
formally proved in (Rayner et al., 2000b).

NP: [num=N, pers=P],
V:[type=trans, num=N, pers=P],
NP: []

and then combining the NP-level rules to
make the rule

NP: [num=N, pers=3] -->
DET: [num=N], ADJ:[], NBAR: [num=N]

This shows a typical strategy when perform-
ing EBL-based grammar specialisation: we
“flatten” the grammar so that only a small
number of non-pre-terminal categories are
left. In the first example, there are no non-
pre-terminal categories left except SIGMA; in
the second one, the non-pre-terminals in the
specialised grammar are SIGMA and NP. A
set of meta-rules is thus needed to determine
which chunks of derivation are turned into
macro-rules. We will call meta-rules of this
type “cutting-up criteria”?.

Experiments from the papers quoted above
demonstrate that a specialised grammar can
often in practice be much better that an un-
specialised one for parsing tasks; the smaller
search space means that parsing times and
ambiguity are decreased, compensating for
the loss of coverage. There are however some
important caveats. In particular, since a spe-
cialised grammar has a very different struc-
ture compared to a normal grammar, it is by
no means guaranteed that performance will
improve if it is used in conjunction with a
standard parsing strategy.

For example (Samuelsson, 1994) found that
a specialised version of the SRI Core Lan-
guage Engine grammar actually parsed more
slowly than the unspecialised one, if the
CLE’s left-corner parser was used; however,
a specially designed LR parser produced dra-
matically improved parsing times, outper-
forming the CLE parser by more than an or-
der of magnitude. In the next section, we
will see that similar considerations apply to
the task of compiling grammars into language
models.

2Another common name is “operationality crite-

ria”.

4 Applying grammar specialisation
to language model compilation

This section describes how we have applied
grammar specialisation to the task of build-
ing language models from unification gram-
mars. We focus on three specific issues: defin-
ing cutting-up criteria, filtering training ma-
terial, and post-processing of generated spe-
cialised grammars for purposes of language
model compilation.

4.1 Cutting-up criteria

In order to investigate the importance of spe-
cific choice of cutting-up criteria we have used
two cutting-up criteria in our experiments.
The first (“2L”), follows the strategy from
(Samuelsson and Rayner, 1991), and gener-
ates a two-level grammar in which the only
non-pre-terminals are SIGMA and NP. This
is illustrated in the second example in Sec-
tion 3. The second (“3L”) generates a three-
level grammar in which the possible non-
terminals are SIGMA, PP and NP. SIGMAs
may dominate PPs, NPs and words; PPs may
dominate NPs and words; and NPs may dom-
inate PPs and words. Thus for example the
training example “Are the fans at crew hatch
and flight deck on3?” will give us four chun-
ked rules, schematically of the forms

SIGMA --> V NP ADJ
NP --> DET N PP
PP --> P NP

NP --> N CONJ N

4.2 Filtering training material

Since the training data we are using is very
noisy (cf. Section 2), we expected that it
would be desirable to filter it in some way.
During the EBL training phase, we parse all
the corpus utterances and in each case extract
the most preferred derivation; we then decom-
pose each derivation according to the cutting-
up criteria, and from each subderivation save
the chunked EBL rule together with a) the
fringe of the tree used to create it, b) the full
utterance. Each chunked rule is thus tagged

3“Crew hatch” and “flight deck” are both lexical
items in the grammar.

with the set of corpus examples that could
have been used to create it.

At the end of the training run, an ex-
pert judge familiar with the original grammar
manually filters the set of chunked rules, us-
ing a tool which displays the rules with exam-
ples. Rules derived from bad training exam-
ples, which are typically produced by incor-
rect speech recognition, are eliminated.

Data saved by the rule-filtering tool is
stored in a form that allows judgements to
be reused across runs. For the application in-
vestigated here, the initial EBL training run
typically results in about 150 to 750 derived
rules, depending on choice of cutting-up crite-
ria. Manual filtering can then be carried out
at a rate of about 5 to 10 rules per minute.

4.3 Post-processing specialised
grammars for LM compilation

Our initial plan was simply to apply the Gem-
ini UG-to-CFG compiler (Moore, 1998) to
the specialised grammars produced by EBL
learning. A little experimentation however re-
vealed that raw specialised grammars caused
the compiler severe problems. Compilation
times were very high, and for large specialised
grammars they exceeded reasonable resource
limits. We consequently investigated the fac-
tors which were responsible for this behaviour.

Similarly to the results in (Samuelsson,
1994), it turned out that the problem was es-
sentially that the compiler had not been op-
timised for specialised grammars, which typ-
ically have a flat structure with many long
rules. Since the UG-to-CFG compiler essen-
tially works by non-deterministically expand-
ing out unification grammar rules to all their
possible instantiations, long rules can for ob-
vious reasons result in combinatoric explo-
sion. It was however easy to solve the prob-
lem: we eliminated the long rules by trans-
forming the grammar into a binarised form, so
that no production has more than two daugh-
ters. The experiments in the next section con-
trast compilation behaviour with and without
the binarisation transform.

5 Experiments

This section reports a series of experiments in
which we investigated the idea of using gram-
mar specialisation as an aid to compiling lan-
guage models from unification grammars. We
were interested in two main questions. Most
obviously, we wanted to know whether gram-
mar specialisation could be used to improve
the quality of a language model. Thus our
first series of experiments (Section 5.1) takes a
number of language models derived from spe-
cialised grammars, and contrasts their cov-
erage and performance against the language
model derived from the initial unspecialised
grammar.

The second, and arguably more important
question is whether grammar specialisation
can be used to make the process of deriving
a language model from a general unification
grammar more scalable. The initial unifica-
tion grammar’s structure is complex and id-
iosyncratic, and small changes can have large
effects on both compilation times and run-
time performance. The specialised grammar’s
structure is in contrast very uniform, and its
performance can be scaled in a straightfor-
ward way by choosing how many rules to
retain or discard. For example, an obvious
strategy is to retain only rules derived from
patterns that occur in N or more training
examples for some theshold value N. Dis-
carding rules derived from low-frequency ex-
amples loses coverage, but once again tight-
ens the language model. Our second series of
experiments (Section 5.2) consequently exam-
ines the performance of language models de-
rived from different-sized subsets of both the
original and the specialised grammars.

In all these experiments, we trained spe-
cialised grammars on the 14271-utterance
training set described in Section 2, and where
appropriate tested performance on the unseen
wave-file test data described in the same sec-
tion, using the Nuance Toolkit batchrec tool.
We were interested in the following parame-
ters: the time taken to compile the language
model using the Gemini UG-to-CFG compiler
(CmpT), the coverage of the grammar, de-

Version | CmpT | Cov | WER | SER | xR1 Version | CmpT | Cov | WER | SER | xRT
(secs) | (%) | (%) | (%) (secs) | ()| (%) | (%)

Unspec. 4418 100 | 12.79 | 30.41 | .720 25% 18 | 75.06 | 32.37 | 41.93 | .176
2L, F- 2051 | 99.75 | 11.48 | 32.19 | .300 50% 37 198.22 | 11.29 | 28.99 | .209
2L, F+ 536 | 98.28 | 11.43 | 32.24 | .244 V5% 83 199.25 | 11.06 | 28.94 | .212
3L, F- 234 | 99.44 | 12.13 | 29.29 | .287 100% 148 | 99.44 | 11.17 | 29.07 | .229
3L, F+ 148 | 99.44 | 11.17 | 29.07 | .229

Table 2: Performance of language models and
Table 1: Performance of language models recognisers derived from 3-level specialised

and recognisers derived from original unspe-
cialised grammar and four specialised gram-
mars

fined as the proportion of utterances in the
test set that were within grammar coverage
(Cov), the accuracy of the recognition pack-
age derived from the language model in terms
of Word Error Rate (WER) and Sentence
Error Rate (SER), and the average recogni-
tion speed expressed as a multiple of real-time
(xRT). Tests were run on a 360MHz SUN
UltraSparc60 with 1.5GB of RAM, using Ver-
sion 3.8.5 of SICStus Prolog and Version 7.0.2
of Nuance.

5.1 Can specialisation improve the

language model?

We created specialised grammars using the
cutting-up criteria 2L and 3L defined in Sec-
tion 4.1. In order to investigate the extent to
which rule filtering (cf. Section 4.2) affected
the quality of the language model, we pro-
duced two versions of each language model,
differing with respect as to whether the rules
were filtered (F+) or unfiltered (F—). Table 1
summarises the results. For comparison, the
first line shows the corresponding values for
the original unspecialised grammar.

5.2 Are specialised grammars
scalable?

We investigated the scalability of the 3-level
filtered version of the specialised grammar
(“3L, F+7) by constructing language models
from four versions of the grammar containing
different numbers of rules. The full grammar
has 80 rules. These rules were first ordered by
the number of times the example they were
derived from occurred in the training corpus;

grammars of four different sizes

Version | CmpT | Cov | WER | SER | xRT
(secs) | (%) | (%) | (%)

25% 11 | 48.60 | 60.07 | 62.40 | .158

50% 36 | 82.84 | 25.11 | 39.24 | .234

5% 369 | 99.94 | 11.70 | 30.10 | .481

100% 4418 100 | 12.79 | 30.41 | .720

Table 3: Performance of language models and
recognisers derived from unspecialised gram-
mars of four different sizes

the four grammars were then built, respec-
tively, from the first 25% of the rules, the first
50%, the first 75% and the whole set. The re-
sults are presented in Table 2.

In order to construct a corresponding test
of scalability for the original 59-rule unspe-
cialised grammar, we ordered its rules by their
frequency of occurrence in the parsed train-
ing corpus. We then constructed three proper
subsets of the grammar, which respectively
consisted of the most frequent 25%, 50% and
75% of the rules. We derived language models
from these subsets and from the full grammar,
and evaluated them similarly. The results are
in Table 3.

Finally, we tested the effect of the binari-
sation transform on the UG-to-CFG compi-
lation process by compiling six sample gram-
mars (two unspecialised and four specialised)
with the switch controlling binarisation set in
turn on (BIN+) and off (BIN-). Table 4
presents the results. It is apparent that bi-
narisation is substantially irrelevant to un-
specialised grammars, but crucial when spe-
cialised grammars are used.

| Version | BIN+ | BIN- |
Unspec, 50% 36 37
Unspec, 100% | 4418 | 4537
9L, F+, 50% 174 -
oL, Ft, 100% | 516 -
3L, T+, 50% 37 48
3L, Ft, 100% | 148 | 2924

Table 4: Compilation times in seconds for
two unspecialised and four specialised gram-
mars, with binarisation respectively on and
off. Compilation of both “2L.” grammars ex-
ceeded resource bounds with binarisation off.

6 Conclusions and further
directions

Our original goal was to use grammar spe-
cialisation to tune the language model by as-
sociating it more closely with the domain.
Comparing the best specialised grammar (the
“75%” grammar from Table 2) and the best
unspecialised grammar (the “75%” grammar
from Table 3), we see that the recogniser pro-
duced from the specialised grammar is more
than twice as fast as the one produced from
the unspecialised grammar (0.212xRT ver-
sus 0.481xRT). Specialisation has lost 0.7%
of coverage (99.25% versus 99.94%), but the
tighter model means that the specialised
recogniser actually has slightly better WER
(11.06% versus 11.70%) and SER (28.94%
versus 30.10%). Only a couple of hours of hu-
man expert time were needed to do the rule-
filtering described in Section 4.2. We regard
this as a clear success.

To our thinking, however, the really ex-
citing data are the scalability results from
Section 5.2. Looking at Table 2 and Ta-
ble 3, we see utterly different behaviours.
The unspecialised grammars in Table 3 be-
comes increasingly intractable as more rules
are added, with compilation times going up
approximately exponentially and processing
times approximately linearly. In contrast,
the relationship between compilation times
and number of rules for the specialised 3-
level grammar of Table 2 is approximately
quadratic, and the relationship between pro-

cessing times and numbers of rules is clearly
sub-linear. As far as generation of CFG lan-
guage models is concerned, the bottom line is
that the unspecialised grammar has already
reached its maximum size. Specialised gram-
mars, on the other hand, can almost certainly
be made much larger than the ones shown
here and still be practically useful.

The next step seems clear. The existing un-
specialised grammar is, as noted, essentially
an adapted and scaled-down subset of the SRI
Core Language Engine grammar for English;
the reason why it is only a subset is that
anything larger fails to compile. Given the
above results, it however seems quite feasible
to expand it so that it becomes a fully general
broad-coverage grammar. A grammar of this
kind would certainly not compile into a use-
ful CFG language model; it would, however,
support parsing of text corpora, and hence
EBL-based generation of specialised gram-
The indications are that these spe-
cialised grammars could then be compiled
into language models. Putting the pieces to-
gether, the result would be a practical method
for rapid derivation of CFG language models
from small example corpora. We are in the
process of implementing this plan, and hope
to be able to report soon as to whether it
yields the desired results.

mars.

References

H. Alshawi, editor. 1992. The Core Language
Engine. MIT Press, Cambridge, Massachusetts.

J. Bos, 2002. UNIANCE: A compiler that
translates wunification grammars into GSL.
http://www.iccs.informatics.ed.ac.uk/ jbos/-
systems.html. As of 28 February 2002.

J. Dowding, M. Gawron, D. Appelt, L. Cherny,
R. Moore, and D. Moran. 1993. Gemini: A nat-
ural language system for spoken language un-
derstanding. In Proceedings of the Thirty-First
Annual Meeting of the Association for Compu-
tational Linguistics.

J. Dowding, B.A. Hockey, J.M. Gawron, and
C. Culy. 2001. Practical issues in compiling
typed unification grammars for speech recogni-
tion. In Proceedings of the 39th Annual Meeting
of the Association for Computational Linguis-
tics, Toulouse, France.

R.E. Fikes and N.J. Nilson. 1971. Strips: A new
approach to the application of theorem prov-
ing to problem solving. Artificial Intelligence,
3:251-288.

B. Kiefer and H. Krieger. 2000. A context-
free approximation of head-driven phrase struc-
ture grammar. In Proceedings of the 6th In-

ternational Workshop on Parsing Technologies,
pages 135-146.

S. Knight, G. Gorrell, M. Rayner, D. Milward,
R. Koeling, and I. Lewin. 2001. Compar-
ing grammar-based and robust approaches to
speech understanding: a case study. In Pro-
ceedings of Eurospeech 2001, pages 17791782,
Aalborg, Denmark.

T.S. Mitchell, S. Kedar-Cabelli, and R. Keller.
1986. Explanation-based generalization: a uni-
fying view. Machine Learning, 1(1):47-80.

R. Moore. 1998. Using natural language knowl-
edge sources in speech recognition. In Proceed-
ings of the NATO Advanced Studies Institute.

G. Neumann. 1994. Application of explanation-
based learning for efficient processing of
constraint-based grammars. In Proceedings of
the Tenth IEEE Conference on Artifical Intelli-
gence for Applications, pages 208-215, San An-
tonio, TX.

Nuance, 2002. http://www.nuance.com. As of 1
Feb 2002.

PSA, 2002. Personal Satel-
lite Assistant (PSA) Project.
http://ic.arc.nasa.gov/ic/projects/psa/. As of
1 Feb 2002.

S.G. Pulman. 1992. Syntactic and semantic pro-
cessing. In Alshawi (Alshawi, 1992), pages 129
148.

M. Rayner and D.M. Carter. 1996. Fast parsing
using pruning and grammar specialization. In
Proceedings of the Thirty-Fourth Annual Meet-
ing of the Association for Computational Lin-
guistics, pages 223-230, Santa Cruz, California.

M. Rayner, D. Carter, P. Bouillon, V. Digalakis,
and M. Wirén, editors. 2000a. The Spoken Lan-
guage Translator. Cambridge University Press.

M. Rayner, D. Carter, and C. Samuelsson. 2000b.
Grammar specialization. In Rayner et al.
(Rayner et al., 2000a).

M. Rayner, B.A. Hockey, and F. James. 2000c. A
compact architecture for dialogue management
based on scripts and meta-outputs. In Proceed-
ings of ANLP 2000.

M. Rayner, B.A. Hockey, and F. James. 2000d.
Compiling language models from a linguisti-
cally motivated unification grammar. In Pro-
ceedings of the Eighteenth International Con-
ference on Computational Linguistics.

M. Rayner, J. Dowding, and B.A. Hockey. 2001.
A basgeline method for compiling typed unifica-
tion grammars into context free language mod-
els. In Proceedings of Eurospeech 2001, pages
729-732, Aalborg, Denmark.

M. Rayner. 1988. Applying explanation-based
generalization to natural-language processing.
In Proceedings of the International Conference
on Fifth Generation Computer Systems, pages
1267-1274, Kyoto, Japan.

R. Rosenfeld and X. Huang. 1992. Improvements
in stochastic language modeling. In Speech and
Natural Language Workshop, pages 107-111.

C. Samuelsson and M. Rayner. 1991. Quanti-
tative evaluation of explanation-based learning
as an optimization tool for a large-scale natural
language system. In Proceedings of the Twelfth
IJCAI pages 609-615, Sydney, Australia.

C. Samuelsson. 1994. Fast Natural-Language
Parsing Using FEzxplanation-Based Learning.
Ph.D. thesis, The Royal Institute of Technol-
ogy and Stockholm University.

SpeechWorks, 2002.
http://www.speechworks.com. As of 1 Feb
2002.

B. Srinivas and A. Joshi. 1995. Some novel appli-
cations of explanation-based learning to parsing
lexicalized tree-adjoining grammars. In Pro-
ceedings of the 33th Annual Meeting of the As-
sociation for Computational Linguistics.

W. Ward and S. Issar. 1995. The cmu atis sys-
tem. In Spoken Language System Technology
Workshop, pages 249-251.

